A Nonparametric Regression Spectrum : Estimation, Asymptotic Properties and Data Analysis
نویسنده
چکیده
Classical spectral analysis in statistics considers decomposition of stationary time series into sinusoidal components. The autocovariance and the spectrum are fundamental elements for analyzing a given time series both in time and frequency domain. However, in practice one frequently observes nonstationary time series. In order to apply spectral analysis to these processes, an extension of the classical spectral theory to more general situations is required. This thesis investigates dependence structures in multivariate time series that are characterized by deterministic trends. Here, we extend the theory of stationary processes to deterministic nonparametric trend functions. In a nonparametric regression setting these functions are usually unknown and have to be estimated. Estimation of the trend function will be performed by applying wavelet thresholding, a simple but yet efficient way to recover a signal of unknown regularity from some noisy data. Chapter 2 presents a review about wavelets and their use in statistics. This involves construction of compactly supported wavelet bases, wavelet transformation of a square integrable function and the application in linear and nonlinear function estimation. An extensive review of the literature on wavelet thresholding is presented and some asymptotic results are derived. In chapter 3, we consider dependence structures in multivariate time series that are due to similarities in underlying deterministic trends. Results from spectral analysis for stationary processes are extended to deterministic trend
منابع مشابه
Wavelets for Nonparametric Stochastic Regression with Pairwise Negative Quadrant Dependent Random Variables
We propose a wavelet based stochastic regression function estimator for the estimation of the regression function for a sequence of pairwise negative quadrant dependent random variables with a common one-dimensional probability density function. Some asymptotic properties of the proposed estimator are investigated. It is found that the estimators have similar properties to their counterparts st...
متن کاملEstimation of a nonparametric regression spectrum for multivariate time series
Estimation of a nonparametric regression spectrum based on the periodogram is considered. Neither trend estimation nor smoothing of the periodogram are required. Alternatively, for cases where spectral estimation of phase shifts fails and the shift does not depend on frequency, a time domain estimator of the lag-shift is defined. Asymptotic properties of the frequency and time domain estimators...
متن کاملNonparametric Regression Estimation under Kernel Polynomial Model for Unstructured Data
The nonparametric estimation(NE) of kernel polynomial regression (KPR) model is a powerful tool to visually depict the effect of covariates on response variable, when there exist unstructured and heterogeneous data. In this paper we introduce KPR model that is the mixture of nonparametric regression models with bootstrap algorithm, which is considered in a heterogeneous and unstructured framewo...
متن کاملNonparametric Mixture of Regression Models.
Motivated by an analysis of US house price index data, we propose nonparametric finite mixture of regression models. We study the identifiability issue of the proposed models, and develop an estimation procedure by employing kernel regression. We further systematically study the sampling properties of the proposed estimators, and establish their asymptotic normality. A modified EM algorithm is ...
متن کاملA General Asymptotic Theory for Maximum Likelihood Estimation in Semiparametric Regression Models with Censored Data.
We establish a general asymptotic theory for nonparametric maximum likelihood estimation in semiparametric regression models with right censored data. We identify a set of regularity conditions under which the nonparametric maximum likelihood estimators are consistent, asymptotically normal, and asymptotically efficient with a covariance matrix that can be consistently estimated by the inverse ...
متن کامل